
Write Optimization of Log-structured Flash File
System for Parallel I/O on Manycore Servers

Chang-Gyu Lee, Hyunki Byun, Sunghyun Noh, Hyeongu Kang, Youngjae Kim
Department of Computer Science and Engineering

Sogang University, Seoul, Republic of Korea

SYSTOR ‘19

1

Data Intensive Applications
� Massive data explosion in recent years and expected to grow

� Database Applications

2007,
281 EB

2010,
1.2 ZB

2013,
4.4 ZB

2020,
~44 ZB

Growing Capacity Demands

Storage

Memory

2

Parallel Writes

Manycore CPU and NVMe SSD

Manycore Servers

High-Performance SSD

Parallel Writes
OS File System

(F2FS)

3

What are Parallel Writes?
� Shared File Writes (DWOM from FxMark[ATC’16])

� Multiple processes write private regions on a single file.

Process 1 Process 2 Process 3 Process N

� Private File Write with FSYNC (DWSL from FxMark[ATC’16])
� Multiple processes write private files, then call fsync system calls.

Direct I/O Write

Process 1 Process 2 Process 3 Process N
Write and fsync

Shared File

Private Files

* FxMark[ATC’16]: Min. et. al., "Understanding Manycore Scalability of File Systems", USENIX ATC 2016 4

Preliminary Results

5

1 15 28 42 56 70 84 98 112
120

of Cores

0

50

100

150

200

K
IO

PS

1 15 28 42 56 70 84 98 112
120

of Cores

0

50

100

150

200

K
IO

PS

<DWOM Workload> <DWSL Workload>

� In DWOM workload, the performance does not scale.

� In DWSL workload, the performance does not scale after 42 cores.

Contents
� Introduction and Motivation
� Background: F2FS
� Research Problems

� Parallel Writes do never scale with respect to the increased number of cores on Manycore
servers.

� Approaches
� Applying Range-Locking
� NVM Node Logging for file and file system metadata
� Pin-Point Update to completely eliminate checkpointing

� Evaluation Results
� Conclusion

6

F2FS: Flash Friendly File System
� F2FS is a log-structured file system designed for NAND Flash SSD.
� F2FS employs two types of logs to benefit with Flash’s parallelism and garbage

collection.
� Data log for directory entry and user data
� Node log for inode and indirect node

� Node Address Table (NAT) translates Node id (NID) to block address.
� In memory, block address of an NAT entry is updated when corresponding Node

Log is flushed.
� Entire NAT is flushed to the storage device during checkpointing.

CP NAT SIT SSA Node Log Data Log

Filesystem Metadata
(Random write)

Main Log Area
(Sequential Write)

7

Problem(1): Serialized Shared File Writes
� Single file write

A B C

Inode

File

Blocked

Grant Lock

8

Problem(2): fsync Processing in F2FS

inode Data

Node Log Data Log

Node id Block

NAT

DRAM ❷ ❶Datainode

Node id Block

NAT

SSD

Old Data

Reference
Flushing

New Data

9

Problem(3): I/O Blocking during Checkpointing

inode Data

Node Log Data Log

Node id Block

NAT

DRAM ❷ ❶Datainode

Node id Block

NAT

SSD

Old Data

Reference
Flushing

New Data

60 Sec.

Checkpointing

10

Problem(3): I/O Blocking during Checkpointing

inode Data

Node Log Data Log

Node id Block

NAT

DRAM ❷❸ ❶Datainode

Node id Block

NAT

SSD

Old Data

Reference
Flushing

New Data

60 Sec.

Checkpointing

11

Problem(3): I/O Blocking during Checkpointing

inode Data

Node Log Data Log

Node id Block

NAT

DRAM ❷❸ ❶Datainode

Node id Block

NAT

SSD

User Level
Filesystem Level

Old Data

Reference
Flushing

New Data

12

Summary

� We identified the causes of bottlenecks in F2FS for parallel writes as
follows.

1. Serialization of parallel writes on a single file

2. High latency of fsync system call

3. I/O blocking by checkpointing of F2FS

13

Approach(1): Range Locking
� In F2FS, parallel writes to a single file are serialized by inode mutex

lock.

B, ref=0

C, ref=1

A B C

Inode

File

A, ref=0

Grant Lock

Grant Lock

Block

We employed a range-based lock to allow parallel writes on a single file.

14

Approach(2): High Latency of fsync Processing
� When fsync is called, F2FS has to flush data and metadata.

� Even if only small portion of metadata is changed, a block has to be flushed.
� The latency of fsync is dominated by block I/O latency.

inode
Slow Block I/O

Write Amplification

DRAM
SSD

To mitigate high latency of fsync, we propose NVM Node Logging and fine-
graind inode.

inode
Better Latency

Byte-addressability

DRAM
NVM

15

Approach(2): Node Logging on NVM

inode Data

Node Log Data Log

Node id Block

NAT

DRAM ❷ ❶Datainode

Node id Block

NAT

SSDNVM

Old Data

Reference
Flushing

New Data

16

Approach(3): Fine-grained inode Structure

17

inode

Address

Address
Space

nid

4KB Data

Double Indirect

Indirect Node
Direct Node

inode

Address
nid

0.4KB

Data

inode in baseline F2FS Fine-grained inode

Approach(4): Pin-Point NAT Update
� Frequent fsync calls trigger checkpointing in F2FS
� However, F2FS blocks all incoming I/O requests during checkpointing.

To eliminate checkpointing, we propose Pin-Point NAT Update.

18

Approach(4): Pin-Point NAT Update

inode Data

Node Log Data Log

Node id Block

NAT

DRAM ❷❸ ❶Datainode

Node id Block

NAT

SSDNVM

Old Data

Reference
Flushing

New DataIn Pin-Point NAT Update, we update only the modified NAT entry
directly in NVM when fsync is called. Therefore, checkpointing is
not necessary to persist the entire NAT.

19

Approach(4): Pin-Point NAT Update

inode Data

Node Log Data Log

Node id Block

NAT

DRAM ❷❸ ❶Datainode

Node id Block

NAT

SSDNVM

Old Data

Reference
Flushing

New Data

20

Evaluation Setup
� Microbenchmark (FxMark)

� DWOM
� Shared File Write

� DWSL
� Private File Write with fsync CPU

Intel Xeon E7-8870 v2 2.3GHz
8 CPU Nodes (15 Cores per Node)
Total 120 cores

RAM 740GB

SSD Intel SSD 750 Series 400GB (NVMe)
Read: 2200 MB/s, Write: 900 MB/s

NVM 32GB Emulated as PMEM device on R
AM

OS Linux kernel 4.14.11

� Test-bed
� IBM x3950 X6 Manycore Server

* FxMark[ATC’16]: Min. et. al., "Understanding Manycore Scalability of File Systems", USENIX ATC 2016
21

Shared File Write (DWOM Workload)

0

20

40

60

80

100

120

140

1 15 28 42 56 70 84 98 112 120

K
IO

PS

of Cores

baseline range lock node logging integrated

X15

X6.8• Baseline and node logging lines overlap.
• Node Logging does not help at all because DWOM

workload does not carry fsync calls.

22

Frequent fsync (DWSL Workload)

0

50

100

150

200

250

1 15 28 42 56 70 84 98 112 120

K
IO

PS

of Cores

baseline range lock node logging integrated

X1.6

23

Conclusion
� We identified performance bottlenecks of F2FS for parallel writes.

1. Serialization of share file writes on a file
2. High latency of fsync operations in F2FS
3. High I/O blocking times during checkpointing.

� To solve these problem, we proposed
1. File-level Range Lock to allow parallel writes on a shared file
2. NVM Node Logging to provides lower latency for updating file/file system

metadata
3. Pin-Point NAT Update to eliminate I/O blocking times of checkpointing

24

Q&A

25

Thank you!

� Contact: Changgyu Lee (changgyu@sogang.ac.kr)
Department of Computer Science and Engineering
Sogang University, Seoul, Republic of Korea

mailto:changgyu@sogang.ac.kr)

