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Data Intensive Applications 
� Massive data explosion in recent years and expected to grow

� Database Applications 
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Manycore CPU and NVMe SSD

Manycore Servers

High-Performance SSD

Parallel Writes
OS File System 

(F2FS)
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What are Parallel Writes? 
� Shared File Writes (DWOM from FxMark[ATC’16])

� Multiple processes write private regions on a single file.

Process 1 Process 2 Process 3 Process N

� Private File Write with FSYNC (DWSL from FxMark[ATC’16])
� Multiple processes write private files, then call fsync system calls.

Direct I/O Write

Process 1 Process 2 Process 3 Process N
Write and fsync

Shared File

Private Files

* FxMark[ATC’16]: Min. et. al., "Understanding Manycore Scalability of File Systems", USENIX ATC 2016 4



Preliminary Results
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� In DWOM workload, the performance does not scale.

� In DWSL workload, the performance does not scale after 42 cores.



Contents
� Introduction and Motivation
� Background: F2FS
� Research Problems

� Parallel Writes do never scale with respect to the increased number of cores on Manycore 
servers.

� Approaches
� Applying Range-Locking 
� NVM Node Logging for file and file system metadata
� Pin-Point Update to completely eliminate checkpointing 

� Evaluation Results 
� Conclusion 
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F2FS: Flash Friendly File System
� F2FS is a log-structured file system designed for NAND Flash SSD.
� F2FS employs two types of logs to benefit with Flash’s parallelism and garbage 

collection.
� Data log for directory entry and user data
� Node log for inode and indirect node

� Node Address Table (NAT) translates Node id (NID) to block address.
� In memory, block address of an NAT entry is updated when corresponding Node 

Log is flushed. 
� Entire NAT is flushed to the storage device during checkpointing.

CP NAT SIT SSA Node Log Data Log

Filesystem Metadata
(Random write)

Main Log Area
(Sequential Write)
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Problem(1): Serialized Shared File Writes 
� Single file write

A B C
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Grant Lock
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Problem(2): fsync Processing in F2FS
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Problem(3): I/O Blocking during Checkpointing
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Problem(3): I/O Blocking during Checkpointing
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Problem(3): I/O Blocking during Checkpointing
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Summary

� We identified the causes of bottlenecks in F2FS for parallel writes as 
follows.

1. Serialization of parallel writes on a single file

2. High latency of fsync system call

3. I/O blocking by checkpointing of F2FS
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Approach(1): Range Locking 
� In F2FS, parallel writes to a single file are serialized by inode mutex

lock.

B, ref=0

C, ref=1

A B C

Inode

File

A, ref=0

Grant Lock

Grant Lock

Block

We employed a range-based lock to allow parallel writes on a single file.
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Approach(2): High Latency of fsync Processing
� When fsync is called, F2FS has to flush data and metadata.

� Even if only small portion of metadata is changed, a block has to be flushed.
� The latency of fsync is dominated by block I/O latency.

inode
Slow Block I/O

Write Amplification

DRAM
SSD

To mitigate high latency of fsync, we propose NVM Node Logging and fine-
graind inode.

inode
Better Latency

Byte-addressability

DRAM
NVM
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Approach(2): Node Logging on NVM 
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Approach(3): Fine-grained inode Structure 
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Approach(4): Pin-Point NAT Update
� Frequent fsync calls trigger checkpointing in F2FS
� However, F2FS blocks all incoming I/O requests during checkpointing.

To eliminate checkpointing, we propose Pin-Point NAT Update.
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Approach(4): Pin-Point NAT Update
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New DataIn Pin-Point NAT Update, we update only the modified NAT entry 
directly in NVM when fsync is called. Therefore, checkpointing is 
not necessary to persist the entire NAT. 
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Approach(4): Pin-Point NAT Update
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Evaluation Setup 
� Microbenchmark (FxMark)

� DWOM
� Shared File Write

� DWSL
� Private File Write with fsync CPU

Intel Xeon E7-8870 v2 2.3GHz
8 CPU Nodes (15 Cores per Node)
Total 120 cores

RAM 740GB

SSD Intel SSD 750 Series 400GB (NVMe)
Read: 2200 MB/s, Write: 900 MB/s

NVM 32GB Emulated as PMEM device on R
AM

OS Linux kernel 4.14.11

� Test-bed
� IBM x3950 X6 Manycore  Server

* FxMark[ATC’16]: Min. et. al., "Understanding Manycore Scalability of File Systems", USENIX ATC 2016 
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Shared File Write (DWOM Workload)
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Frequent fsync (DWSL Workload)
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Conclusion 
� We identified performance bottlenecks of F2FS for parallel writes. 

1. Serialization of share file writes on a file 
2. High latency of fsync operations in F2FS 
3. High I/O blocking times during checkpointing.

� To solve these problem, we proposed 
1. File-level Range Lock to allow parallel writes on a shared file
2. NVM Node Logging to provides lower latency for updating file/file system 

metadata
3. Pin-Point NAT Update to eliminate I/O blocking times of checkpointing 

24



Q&A
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Thank you! 

� Contact: Changgyu Lee (changgyu@sogang.ac.kr)
Department of Computer Science and Engineering
Sogang University, Seoul, Republic of Korea
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